首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11989篇
  免费   2057篇
  国内免费   1097篇
电工技术   1354篇
综合类   1134篇
化学工业   2169篇
金属工艺   436篇
机械仪表   972篇
建筑科学   219篇
矿业工程   182篇
能源动力   740篇
轻工业   155篇
水利工程   177篇
石油天然气   455篇
武器工业   347篇
无线电   1369篇
一般工业技术   1520篇
冶金工业   281篇
原子能技术   98篇
自动化技术   3535篇
  2024年   42篇
  2023年   290篇
  2022年   485篇
  2021年   486篇
  2020年   620篇
  2019年   502篇
  2018年   458篇
  2017年   581篇
  2016年   618篇
  2015年   629篇
  2014年   760篇
  2013年   863篇
  2012年   918篇
  2011年   1023篇
  2010年   714篇
  2009年   774篇
  2008年   645篇
  2007年   770篇
  2006年   649篇
  2005年   507篇
  2004年   398篇
  2003年   397篇
  2002年   327篇
  2001年   253篇
  2000年   243篇
  1999年   162篇
  1998年   164篇
  1997年   139篇
  1996年   126篇
  1995年   101篇
  1994年   108篇
  1993年   57篇
  1992年   74篇
  1991年   49篇
  1990年   43篇
  1989年   31篇
  1988年   20篇
  1987年   23篇
  1986年   16篇
  1985年   13篇
  1984年   20篇
  1983年   14篇
  1982年   13篇
  1981年   8篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 106 毫秒
11.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
12.
Catalyst samples for CH4 decomposition were prepared from red mud (RM) by an acid-leaching neutralization precipitation approach. Water-washing the resultant precipitates multiple times, followed by drying at 105 °C and calcination at 500 °C, resulted in a threshold of residual Na2O, equivalent to 96% Na2O removal. Drying the precipitate at a higher temperature of 200 °C, followed by repeated water washing, provided a deeper Na2O removal of 99% and made the resultant samples more active for the targeted reaction. Subsequently, four catalyst samples with a simulated red mud composition and NaOH contents from 0 to 0.3 wt% were prepared and the catalytic test results revealed that the Na2O remaining in the RM-derived catalysts did not only inhibit their activation in CH4 but also lower their maximal activities for CH4 decomposition. Finally, two catalysts with the same simulated red mud composition and their Na impregnated respectively on Fe2O3 and a mixture support of Al2O3-SiO2-TiO2 were prepared and tested to explore the effect of Na distribution on the activation behavior of RM-derived catalysts for CH4 decomposition. The activity testing results showed that it was the Na residual dispersed on iron oxides in the RM-derived samples to significantly inhibit the activation of CH4 decomposition.  相似文献   
13.
Electric distribution networks have to deal with issues caused by natural disasters. These problems possess unique characteristics, and their severity can make load restoration methods impotent. One solution that can help in alleviating the aftermath is the use of microgrids (MGs). Employing the cumulative capacity of the generation resources through MG coupling facilitates the self-healing capability and leads to better-coordinated energy management during the restoration period, while the switching capability of the system should also be considered. In this paper, to form and schedule dynamic MGs in distribution systems, a novel model based on mixed-integer linear programming (MILP) is proposed. This approach employs graph-related theories to formulate the optimal formation of the networked MGs and management of their proper participation in the load recovery process. In addition, the Benders decomposition technique is applied to alleviate computability issues of the optimization problem. The validity and applicability of the proposed model are evaluated by several simulation studies.  相似文献   
14.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
15.
以硫酸钴为原料,碳酸氢铵为沉淀剂,采用液相沉淀法合成了大粒径球形碳酸钴,考察了不同晶种量、pH和硫酸钴溶液流量对碳酸钴形貌、粒度分布、振实密度和硫元素质量分数的影响,并探究了碳酸钴的生长机理。通过分步煅烧,并设置不同升温时间使碳酸钴热分解,得出优化四氧化三钴理化指标的煅烧条件。结果表明,当晶种量为2 kg,pH在7.2~7.5,硫酸钴溶液流量为500 mL/h时,采用分段式热分解碳酸钴,各温区按统一时间(60 min)升温,所得四氧化三钴形貌为球形,中值粒径为16.52μm,振实密度达2.26 g/cm3。  相似文献   
16.
In this study, we examined the dependence of surface morphology and spin Seebeck effect (SSE) voltages on the poly[vinylpyrrolidone] (PVP) concentration in polycrystalline Y3Fe5O12 (YIG) ultrathin films on a silicon substrate synthesized by metal-organic decomposition followed by a crystallization process. During fabrication, PVP concentrations of 0.5–2 g were used while all other conditions remained fixed. Atomic force microscopy and grazing incidence X-ray diffraction (XRD) measurements revealed a strong dependence of crystallinity and sample morphology on PVP concentration. The 1-g PVP sample had the smoothest surface, with a root mean square roughness of 0.2 nm, as well as superior bulk uniformity with respect to the shape and intensity of XRD reflection peaks. This was confirmed by scanning electron microscopy measurements of a cross-section of the sample that revealed a uniform film without pores. SSE measurements were performed to obtain the output SSE voltages (VSSE) of all samples, to which a platinum layer was added as a spin-detection layer. Repeatedly, the 1-g PVP sample had the best performance, demonstrating the importance of film crystallinity and morphology in the spin-to-charge conversion efficiency of YIG films.  相似文献   
17.
《Ceramics International》2022,48(7):9651-9657
Friction is a common clean energy and can be harvested and converted into electricity energy via triboelectricity, which can electrochemically drive dye decomposition in theory. In this work, the tribocatalytic Rhodamine B dye decomposition has been experimentally realized in strontium titanate (SrTiO3) nanofibers, which are synthesized via a hydrothermal method. In the tribocatalytic dye decomposition process, the friction is exerted in the interface between catalyst surface and a polytetrafluoroethylene (PTFE) Teflon rod setup with the different stirring speed. The RhB dye decomposition ratios of SrTiO3 nanofibers at these stirring speeds of 200 rpm, 400 rpm, 600 rpm, and 800 rpm are respectively 24.2%, 51.8%, 73.9% and 88.6%, yielding to these reaction rate constants of ~0.0112 h?1, ~0.0260 h?1, ~0.0562 h?1 and ~0.0877 h?1. The main active species, which play an important role in tribocatalytic process, are the superoxide radicals and holes on basis of the active species quenching experiment results. The excellent tribocatalysis activity makes SrTiO3 nanofibers potential for application in dye wastewater treatment through utilizing the environmental friction energy.  相似文献   
18.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
19.
Modal analysis is an important tool in the structural dynamics community; it is widely utilised to understand and investigate the dynamical characteristics of linear structures. Many methods have been proposed in recent years regarding the extension to nonlinear analysis, such as nonlinear normal modes or the method of normal forms, with the main objective being to formulate a mathematical model of a nonlinear dynamical structure based on observations of input/output data from the dynamical system. In fact, for the majority of structures where the effect of nonlinearity becomes significant, nonlinear modal analysis is a necessity. The objective of the current paper is to demonstrate a machine learning approach to output‐only nonlinear modal decomposition using kernel independent component analysis and locally linear‐embedding analysis. The key element is to demonstrate a pattern recognition approach which exploits the idea of independence of principal components from the linear theory by learning the nonlinear manifold between the variables. In this work, the importance of output‐only modal analysis via “blind source” separation tools is highlighted as the excitation input/force is not needed and the method can be implemented directly via experimental data signals without worrying about the presence or not of specific nonlinearities in the structure.  相似文献   
20.
The motivation of this work is to address real-time sequential inference of parameters with a full Bayesian formulation. First, the proper generalized decomposition (PGD) is used to reduce the computational evaluation of the posterior density in the online phase. Second, Transport Map sampling is used to build a deterministic coupling between a reference measure and the posterior measure. The determination of the transport maps involves the solution of a minimization problem. As the PGD model is quasi-analytical and under a variable separation form, the use of gradient and Hessian information speeds up the minimization algorithm. Eventually, uncertainty quantification on outputs of interest of the model can be easily performed due to the global feature of the PGD solution over all coordinate domains. Numerical examples highlight the performance of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号